

Specification of requirements on data and modelling needs

......

Deliverable 6.1

BONUS BASMATI Specification of requirements on data and modelling needs December 2017

Authors:

Anne Erkkilä-Välimäki, Hanna Luhtala, Harri Tolvanen, University of Turku Solvita Strāķe, Ingrīda Puriņa, Kristīne Pakalniete, Latvian Institute of Aquatic Ecology Kerstin Schiele, Miriam von Thenen, Leibniz Institute for Baltic Sea Research Warnemünde

This report is a publicly accessible deliverable of the BONUS BASMATI project. The present work has been carried out within the project 'Baltic Sea Maritime Spatial Planning for Sustainable Ecosystem Services (BONUS BASMATI)', which has received funding from BONUS (art. 185), funded jointly by the EU, Innovation Fund Denmark, Swedish Research Council Formas, Academy of Finland, Latvian Ministry of Education and Science and Forschungszentrum Jülich GmbH (Germany).

This report may be downloaded from the internet and copied, provided that it is not changed and that it is properly referenced. It may be cited as:

Erkkilä-Välimäki, A, Luhtala, H, Tolvanen, H, Strāke, S, Puriņa, I, Pakalniete, K, Schiele, K, von Thenen, M, Specification of requirements on data and modelling needs. BONUS BASMATI Deliverable 6.1, December 2017, www.bonusbasmati.eu

Contents

BONUS BASMATI in brief				
1	Introducti	on	6	
2	Data requ 2.1 2.2	irements in MSP The role of data in MSP The MSP data aspects in the EU	6 7	
3	Data and 1 3.1 3.1.1 3.2 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2	modelling needs in BONUS BASMATI Introduction to the case study Introduction to the case study Introduction to the case study Specific data and modelling needs of the Latvian case study Introduction to the case study Introduction to the case study Introduction to the case study Introduction to the case study Introduction to the case study Specific data and modelling needs of the Danish-German case study Introduction to the case study Case Study 3: Pan-Baltic 10 Introduction to the case study 10 Specific data and modelling needs of the Pan-Baltic case study 10 Introduction to the case study 10 Introd		
4	Discussio	n and conclusions1		
5	Reference	es1:	2	

ANNEX A: Data and modelling needs of the Latvian case study ANNEX B: Data and modelling needs of the Danish-German case study ANNEX C: Data and modelling needs of the Pan-Baltic case study

BONUS BASMATI in brief

BONUS call 2015:

Blue Baltic

Project coordinator:

Henning Sten Hansen, Aalborg University, Denmark

Project partners:

Aalborg University, Denmark (AAU) Aarhus University, Denmark (AU) Finnish Geospatial Research Institute, Finland (FGI) Latvian Institute of Aquatic Ecology, Latvia (LIAE) Leibniz Institute for Baltic Sea Research Warnemünde, Germany (IOW) Nordregio, Sweden (Nordregio) University of Turku, Finland (UTU)

Duration:

3 years, 7/2017 - 6/2020

Key theme addressed:

Theme 4.3 Maritime spatial planning from local to Baltic Sea region scale

Subthemes:

Theme 2.3 Integrated approaches to coastal management and Theme 4.1 Governance structures, policy performance and policy instruments

https://www.bonusportal.org/projects/blue_baltic_2017-2020

Project abstract:

Maritime Spatial Planning (MSP) requires a spatially explicit framework for decision-making, and on that background the overall objective of BONUS BASMATI is to develop integrated and innovative solutions for MSP from the local to the Baltic Sea Region scale. Based on the results of former MSP projects, the BONUS BASMATI project sets out to analyse governance systems and their information needs regarding MSP in the Baltic Sea region in order to develop an operational, transnational model for MSP, while maintaining compliance with existing governance systems. It also develops methods and tools for the assessments of different plan-proposals, while including spatially explicit pressures and effects on marine ecosystem services in order to create a spatial decision support system (SDSS) for the Baltic Sea region to facilitate broad access to information. During the project running until 2020, new data will be produced and tested in assessments corresponding to policy goals. The data will support analysis regarding ecosystem services: provisioning, regulating, and cultural services. A central aim of the project is to facilitate cross-border collaboration, and the project is carried out in close cooperation with relevant stakeholders in the Baltic Sea Region. The impact of the project will be facilitated and assessed in transnational case studies, where integrated solutions are required. The local scale will consist of case study areas in the South-West Baltic, the Latvian territorial and EEZ waters including open part of the Baltic Sea and the Gulf of Riga, and across the region, a pan-Baltic case study will be performed.

1 Introduction

Maritime spatial planning (MSP) is widely understood as the evidence-based process, which means that planning decisions needs to be based on sound data and information (e.g. Day 2008, Gilliland and Laffoley 2008, Ehler and Douvere 2009, Stelzenmüller et al. 2013). As a consequence, spatial data comprise the backbone of the information needed in the planning process, even though information which is more challenging to present in spatial format should be equally important, such as cultural and social aspects (Shucksmith et al. 2014, Stamoulis and Delevaux 2015, Gee et al. 2017). Issues concerning, for example the usability, the inadequacies, and the aggregation of data are considered in many studies which aim to produce information and methodology to support the planning processes (e.g. Halpern et al. 2008, Klain and Chan 2012, Shucksmith et al. 2014, Caldow et al. 2015, Mangubhai et al. 2015, Sullivan et al. 2015, Fiorini et al. 2016). In addition, the dynamic three-dimensional nature of coastal and sea waters require the modelling of multi-level processes and interactions (e.g. Maxwell et al. 2015, Reiss et al. 2015, Hidalgo et al. 2017). Because of the many studies and projects already concerning the MSP data and modelling, this report only shortly summarizes some of the main findings related to the issues relevant to the BONUS BASMATI case studies. Moreover, the project will, in its work package 3, take a closer look at data properties, availability, and consequences to planning.

The focus of this report is on the data and modelling requirements of the BONUS BASMATI project. The project organises three case studies which act as test-beds for a decision support system to be created in the project. Therefore, the report highlights the data and modelling needs from the specific case study perspectives. As these three case studies have different thematic scope and spatial range, each of them is shortly introduced and their data requirements are discussed separately. This report and its annexes set the stage for the data identification process. The list of data and modelling needs will be updated and modified as new requirements are identified during the life cycle of the BONUS BASMATI project.

2 Data requirements in MSP

2.1 The role of data in MSP

MSP processes require information which is usable in policy making. Information should concern current situation (stocktaking), future scenarios and visions, as well as policies and planning decisions (Ehler and Douvere 2009). Spatial data is the central element of MSP decision support systems (Stelzenmüller et al. 2013). Thus, the assessment and compilation of information necessary for certain MSP process; developing a user-friendly and transparent tool or to advance current tools for visualizing, integrating, and sharing information as well as to develop clear, reliable, and measurable indicators for monitoring of MSP are important steps when a MSP processes are in the early phase (Halpern et al. 2012). Data can be derived from various sources, such as scientific literature, expert scientific opinions or advice, government sources, local knowledge, and direct field measurement (Ehler and Douvere 2009).

The marine environment is essentially a three-dimensional system, which undergoes temporal changes in short and long time frames. Thus the MSP data can be gathered at any spatial and temporal level, at various levels of detail and it should cover both coastal and marine areas (Ehler and Douvere 2009). In addition, MSP needs information related to land-based activities, infrastructure and loading, such as the port operations or the riverine input of nutrients. The unbounded and dynamic nature of the environment underlines the need for incorporating a transboundary dimension to the MSP planning, regarding, for example, the inter-relations of the environment, maritime resources, and activities as well as the systems of data management, governance, and policy-making

and of the participants involved (Jay et al. 2016). While the well-established land-use planning and rather recent MSP are challenging to unify because of their differing priorities, different institutional and legal frameworks and different epistemological approaches, the transboundary interactions require these planning systems to co-operate (Kerr et al. 2014).

Because MSP is a future-oriented activity, planning should be able to reveal possible alternative futures, instead of only defining and analysing the existing conditions and maintaining the present state of affairs (Ehler and Douvere 2009). Therefore in the stocktaking phase, obvious trends and developments should be considered in order to be able to estimate spatial pressures in the future. As a consequence, MSP data compilation and mapping are demanding tasks which may be expensive if requiring large amounts of time and resources and limiting the resources available for other important aspects of spatial planning (Halpern et al. 2012, Collie et al. 2013). MSPs should be commensurate with the available resources (Collie et al. 2013).

However, not all the marine and coastal data are useful for marine spatial planning, and therefore data collection should be carefully considered. A general rule is that data should be up-to-date, objective, reliable, relevant, and comparable (Ehler and Douvere 2009). On the other hand, also the historical datasets, traditions, and local knowledge are valuable information for MSP, for example in defining the changes of the species abundance, diversity or resilience (e.g. Frans and Augé 2016, von der Heyden 2017). Long-term monitoring is essential for the effective marine management, enabling adjustments of the management programme, guiding the future planning activities and identifying new research and information needs which may improve the next rounds of MSP (Day 2008, Douvere and Ehler 2011). Most of the datasets are spatial, but also nonspatial evidence, such as economic baseline studies are important, especially when setting the objectives in the early stages of MSP process (MSP Data Study 2016).

2.2 The MSP data aspects in the EU

A recent study of MSP data examines comprehensively the data and information needs of the EU member states (MSP Data Study 2016). Despite the variability in the governance structures and natural surroundings of the member states, there are many similarities in their data requirements regarding the MSP process. Some countries are relatively advanced in MSP and data issues, and some are still in the early phases of the process. The Baltic Sea Region, the target area of the BONUS BASMATI project, is described as a forerunner in transboundary MSP (MSP Data Study 2016).

Across all European Sea Basins, there are similarities in data categories that are identified as relevant for MSP: shipping, energy, mineral extraction, recreation, nature conservation, telecommunications, fishing, underwater cultural heritage, and military. However, differences can be found on the weight given to each sector and, to some degree, of topics that are included in the data needs of each sector. In addition, there are differences in the level of importance given to data issues in general. The data needs depend on the planning phase: in the first phase, the stocktaking approach prevails, while in subsequent phases, the evidence needs and consequently the analyses become more complicated, including impact assessments, analysing synergies and conflicts, and inclusion of future scenarios (MSP Data Study 2016).

According to the MSP Data Study (2016), the most significant differences and the most severe shortcomings in the EU member states are the availability of socio-economic and socio-cultural data suitable for the MSP process. Data related to these issues are in many respects missing or not easily usable, which is also a challenge in implementing the ecosystem based approach (EBA). Furthermore, the study indicates that developing the second generation MSP, which requires more analytical information and strategic evidence, has been challenging for the EU member states. The challenges are not dependent on the number of datasets but the ability to aggregate and interpret the data to fulfil the needs of the planners.

The styles of planning differ in different countries (MSP Data Study 2016). One end of the scale is the spatial optimisation and risk minimisation approach. As the focus is on the rational spatial arrangement of the key maritime sectors, the socio-economic evidence of the impacts is less relevant. In the other end of the scale, forward-looking planning includes the elements of participation and aims

at integrated economic, social, and ecological objectives. Consequently, the evidence needs in MSP are influenced by the strategic level of the plan, as well as the level of integration pursued and the degree of stakeholder involvement. The contents of the data infrastructures in the European Sea basins are heavily biased towards describing the state of the environment and the distribution of human activities while the valuations of social and economic activities regarding the environment are addressed to a much lesser extent.

There are pan-European initiatives, such as INSPIRE (Infrastructure for spatial information in Europe) and EMODnet (European Marine Observation and Data Network), which could provide a solution for establishing coherence and harmonisation of spatial data among EU member states. EMODnet, for example, provides harmonised transboundary data on some relevant MSP data categories (i.e. bathymetry, geology, seabed habitats, chemistry, biology, physics, and human activities). The HELCOM Map and Data Service (http://maps.helcom.fi/website/mapservice/), on the other hand, is said to be the only data infrastructure including analyses that comprehensively address the interactions in the marine area (MSP Data Study 2016).

In general, many information gaps still exist when regarding the MSP data availability. Though, as a part of the ongoing Interreg project Baltic LINes (<u>http://www.vasab.org/index.php/balticlines-eu</u>), the HELCOM Map and Data Service is further developed into a new web GIS (geographic information system) application: BASEMAPS. The aim of the new service is to enable searching, viewing, and downloading Baltic Sea GIS data referring to the data needs defined by the HELCOM-VASAB Maritime Spatial Planning Working Group that focuses on the transboundary data issues of the MSP in the Baltic Sea (HELCOM-VASAB MSP WG 2017). In addition, the Baltic Sea - North Sea Marine Spatial Data Infrastructure Working Group analyses the possibilities to share the data of the maritime authorities.

3 Data and modelling needs in BONUS BASMATI

3.1 Case Study 1: Latvia

3.1.1 Introduction to the case study

The Latvian case study aims at the creation of a tool for facilitating identification of new off-shore Marine Protected Areas (MPAs) and re-assessment of location of the existing MPAs in the MSP context. New MPAs are necessary to ensure the adequate protection of highly valuable benthic habitats providing wide range of ecosystem services, in particular to ensure connectivity of MPA networks on national and international scales. The tool will focus on the assessment of impacts and value of alternative sea use options (e.g. MPA vs off-shore wind farm), which will be implemented based on the Multi-Criteria Analysis (MCA) methodology and involving interaction with stakeholders.

The Latvian case study addresses the need for the assessment and comparison of environmental impacts, costs, and benefits of alternative sea use options/scenarios in relation to the designation of MPAs to provide support for discussions with stakeholders and political decision-making for MSP. The tool could also allow assessing the impacts of new sea use activities on the benthic habits, for example identifying the most environmentally sensitive marine areas and further research areas.

3.1.2 Specific data and modelling needs of the Latvian case study

The Latvian case study utilises integrated assessment where spatial data layers on Drivers-Pressures-State-Impacts (DPSI) components are needed. 'State' is characterised by variables related to the benthic habitats. Data about the current abundance of flora and fauna are needed to characterise the present state of the marine and coastal environment. 'Drivers' are human activities using the sea and impacting these benthic habitats, and 'Pressures' are caused by these activities. Hence, spatial information about the current and future human uses of the sea is needed. 'Impacts'

are characterised by the ecosystem services provided by the benthic habitats and the human welfare gains (benefits) from these ecosystem services, where data on relevant indicators allowing their assessment are needed.

Existing data systems (e.g. HELCOM Map and Data Service, EMODnet), where countries provide national information regularly, are highly important information sources for a sea region scale information systems and modelling tools. It needs to be ensured that data are updated and therefore are available over time. Therefore, the case study will aim to utilise such data as much as possible (Annex A). Oceanographical data, seafloor characteristics, and physical-chemical data layers are needed in the identification of suitable benthic habitat locations. In addition to the observed datasets, the case study will also make use of modelled data, especially, when assessing the environmental impacts in the expected hydrographic conditions of the coming years.

The developed tool will allow modelling changes throughout the DPSI "system" in alternative sea use scenarios to elicit and compare their impacts. Thus, information and assessments for the functional relationships between the DPSI elements are needed for the tool (for instance, how various pressures impact various ecosystem elements and ecosystem services). In addition, the data/information on costs and benefits of alternative sea use options/scenarios is necessary for comparing the alternatives and analysing the trade-offs. This information will be compiled based on available and on-going research studies, statistical data sources, and stakeholder involvement.

3.2 Case Study 2: Denmark-Germany

3.2.1 Introduction to the case study

The Danish-German case study investigates opportunities for aquaculture in the south-western Baltic Sea. With eutrophication being one of the main environmental issues in the Baltic Sea, nutrient input and outtake needs to be monitored carefully. Opportunities for aquaculture are limited unless nutrient input is mitigated. Taking advantage of the filtering capacity of mussels, mussel farms can be one option to mitigate eutrophication effects. The focus of the case study is on finding suitable sites for mussel farming and evaluating these sites based on ecosystem services.

Zoning for aquaculture, in particular mussel farming, will be investigated, based on spatial analysis regarding environmental conditions, human activities and farming specific requirements. Alternative locations will be evaluated in terms of effects on ecosystem services (regulating, provisioning and cultural services) in order to identify most suitable areas. The evaluation of potential sites based on ecosystem services is an integral part of the case study and will form the basis of trade-off analysis.

3.2.2 Specific data and modelling needs of the Danish-German case study

The focus of the Danish-German case study is on finding suitable sites for the mussel farming and evaluating these sites based on ecosystem services approaches. The site selection is a step-wise process: i) suitability by environmental conditions, ii) suitability by co-existing human activities and uses, iii) the environmental effects of aquaculture, iv) and the impacts of aquaculture on ecosystem services.

In order to identify areas where mussels find suitable conditions to grow spatial information about environmental properties is required. Oceanographic data, such as information on the local bathymetry, seafloor characteristics, and physical-chemical properties of the water masses, are needed. Second, information on the spatial reservations for both existing and planned infrastructure (e.g. harbours, wind farms) as well as other human activities and uses (e.g. shipping lanes, dumping sites, and nature protection areas) are required (Annex B). Also, information about farming specific requirements, such as maximum distance allowed to the next harbour need to be obtained.

To estimate the impact of an aquaculture site, data on the present state of the marine and coastal environment and models on ecosystem processes are necessary. For example, information on characteristic flora and fauna or areas with frequent oxygen deficiency are needed. Models on

prevailing currents and nutrients flows can then be utilised to simulate the sources and sinks of nutrients and derive the possible effects of aquaculture on the ecosystem. Also, the modelling of the nutrient flows is the basis to estimate at what distance and angle to a fish farm the mussel farms are to be placed to obtain the best solution. A suitable model already exists and has been tested in Limfjorden, Denmark. It consists of a coupled hydrodynamic and biogeochemical model and will be adapted to the potential sites for mussel farming in the south-western Baltic. These modelling efforts require a large amount of biogeochemical data related to concentrations on different forms of nitrogen and phosphorus in water and sediments, as well as other information on the biogeochemistry of the case study area.

To assess the impacts of aquaculture on ecosystem services provided in the respective areas, data on relevant indicators for provisioning, regulating, and cultural services are necessary. The meaningful results of the analysis depend on the appropriate scale and resolution of data. This casestudy focuses on alternative site selection on a local scale, but can serve as an example for other areas in the south-western Baltic Sea.

3.3 Case Study 3: Pan-Baltic

3.3.1 Introduction to the case study

The Pan-Baltic case, covering the entire Baltic Sea area, concentrates on international and offshore activities, i.e. maritime tourism and commercial shipping. The aim is to produce information on stakeholder views and requirements concerning the transboundary and cross-border aspects of maritime spatial planning and the related decision support systems. New knowledge is acquired by questionnaires and interviews which also serve stakeholder involvement and interaction at the Baltic Sea space in a transboundary context.

Tourism and maritime transport differ in terms of spatial requirements and exploitation of marine and coastal ecosystem services (MCES). Both business sectors have synergies and conflicts with other activities using the sea and MCES. The Pan-Baltic case will query, for example, the estimates for the future spatial needs regarding both industry sectors, as well as their conceptions on ecosystem services, MSP, and stakeholder involvement. The focus group will include stakeholders in the Baltic Sea riparian countries and international organizations representing the maritime traffic and tourism in transboundary context.

3.3.2 Specific data and modelling needs of the Pan-Baltic case study

In the Pan-Baltic case study, the basic data needs are in many respects similar to the needs of the other two cases. There is a need to have information on the current human uses and the current environmental status of the sea areas. In addition, there are data requirements related to the MCES linked to tourism and marine transportation. The study will produce new data based on the expert knowledge of the respondents and interviewees. They, on the other hand, will be provided with background data from existing data sources as well as the modelling results of other work packages of the BONUS BASMATI project. Specific to the Pan-Baltic case study is that it emphasises the transboundary and cross-border perspectives as well as the scalability of the data from detailed local assessments to Baltic-wide generalizations.

For both tourism and maritime transport, the issues concerning the use of sea space, the assessment of conflicts and synergies with other sea businesses and sea uses, as well as the issues of safety and security are important. To assess these issues, the information of the present uses as well as estimates of their future developments is required. However, not only the locations of anthropogenic activities are important, but also the intensity of the human influence is relevant in estimating the effects of coexistence of several types of human activities.

The challenge of the transboundary MSP data is the spatial continuity over the state borders and limits of territorial waters. There should be no discontinuities in, for example, planning shipping routes

or nature protection areas. Therefore, a challenge of the Pan-Baltic case study is the harmonization of those datasets, which have been collected by different actors by using varying data standards. While the Baltic Sea region is regarded to be in the forefront of the transboundary MSP data exchange, these processes still need to be further developed (Backer 2011, MSP data study 2016).

Even though transnational MSP data needs are simpler than national data needs in terms of scope and level of detail, there is a challenge to provide data and perform modelling from Baltic-wide datasets. For the most part, the Pan-Baltic case aims to rely on the readily collected datasets and information from HELCOM and recent projects, such as Baltic LINes and Baltic SCOPE (Nicolas et al. 2016, HELCOM 2017), as well as on decision support systems developed for the Baltic Sea planning processes, such as BalticNest Decision Support System (Annex C, Wulff et al. 2013).

However, there will be issues where national, regional, or local datasets are needed as well. For example, data related to marine and coastal tourism, especially in a transboundary context, need to be collected and combined from various data sources and types. Transboundary aspects in the Pan-Baltic case include different geographies, administrative borders as well as cross-sectoral issues. The land-sea interactions and borders are another challenge in this case study, especially concerning the coastal and maritime tourism. The emphasis of the Pan-Baltic case is on the activities that are directly connected or affect the coastal and sea waters. The Pan-Baltic case study could benefit from big data resources, such as data tracked by the automatic identification system (AIS) which illustrates the shipping activities or mobile positioning data describing the movements of tourists.

Discussion and conclusions 4

The wide range of the data and modelling needs of the BONUS BASMATI case studies reflect the high number of different types of information usable in the MSP related processes (Annexes A-C, see also e.g. Ehler and Douvere 2009, Stamoulis and Delevaux 2015, MSP Data Study 2016). All the cases require information on the current and planned sea uses and on the restrictions of the coastal and marine environment. A major part of the data needs is about the current situation, indicating that the case studies in many respects address the first phases of long-term, iterative MSP processes. This also reflects the nature of the project which aims to build the scientific basis concerning issues of MSP governance, stakeholder involvement, and ecosystem approach.

The emphases of the case studies differ from the local and regional scale of the Latvian and Danish-German studies to the Baltic-wide needs of the Pan-Baltic case study. The first two rely on the observations and modelling of the physical, biological, and chemical properties of the marine environment, while the Pan-Baltic study primarily requires data on human activities in the sea area and additionally information on marine environment at the general level. Compared with the data and information used by the MSP planners in the EU member states (MSP Data Study 2016), the physical, chemical, and biological information as well as the activities and uses of the seascape are emphasized in these BONUS BASMATI case studies. Spatial policies and socio-economic aspects are included according to the specific needs of each case study even though they are not yet specified in the Annexes A-C.

5 References

Backer H. 2011. Transboundary maritime spatial planning: a Baltic Sea perspective. *Journal of Coastal Conservation* 15, 279–289.

Caldow C., Monaco M. E., Pittman S. J., Kendall M. S., Goedeke T. L., Menza C., Kinlan P. B. and B. M. Costa 2015. Biogeographic assessments: A framework for information synthesis in marine spatial planning. *Marine Policy* 51, 423–432.

Collie J. S., Adamowicz W. L., Beck M. W., Craig B., Essington T. E., Fluharty D., Rice J. and J. N. Sanchirico 2013. Marine spatial planning in practice. *Estuarine, Coastal and Shelf Science* 117, 1–11.

Day J. 2008. The need and practice of monitoring, evaluating and adapting marine planning and management—lessons from the Great Barrier Reef. *Marine Policy* 32, 823–831.

Douvere F. and C. N. Ehler 2011. The importance of monitoring and evaluation in adaptive maritime spatial planning. *Journal of Coastal Conservation* 15, 305–311.

Ehler C. and F. Douvere 2009. Marine Spatial Planning: a step-by-step approach toward ecosystem-based management. Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris: UNESCO. Available at: <u>http://msp.ioc-unesco.org/msp-guides/msp-step-by-step-approach/</u>

Fiorini M., Capata A. and D. D. Bloisi 2016. AIS Data Visualization for Maritime Spatial Planning (MSP). *International Journal of e-Navigation and Maritime Economy* 5, 45–60.

Frans V. F. and A. A. Augé 2016. Use of local ecological knowledge to investigate endangered baleen whale recovery in the Falkland Islands. *Biological Conservation* 202, 127–137.

Gee K., Kannen A., Adlam R., Brooks C., Chapman M., Cormier R., Fischer C., Fletcher S., Gubbins M., Shucksmith R. and R. Shellock 2017. Identifying culturally significant areas for marine spatial planning. *Ocean & Coastal Management* 136, 139–147.

Gilliland P. M. and D. Laffoley 2008. Key elements and steps in the process of developing ecosystem-based marine spatial planning. *Marine Policy* 32, 787–796.

Halpern B. S., Diamond J., Gaines S., Gelcich S., Gleason M., Jennings S., Lester S., Mace A., McCook L., McLeod K., Napoli N., Rawson K., Rice J., Rosenberg A., Ruckelshaus M., Saier B., Sandifer P., Scholz A. and A. Zivian 2012. Near-term priorities for the science, policy and practice of Coastal and Marine Spatial Planning (CMSP). *Marine Policy* 36, 198–205.

Halpern B. S., Walbridge S., Selkoe K. A., Kappel C. V., Micheli F., Agrosa C. D., Bruno J. F.,
Casey K. S., Ebert C., Fox H. E., Fujita R., Heinemann D., Lenihan H. S., Madin E. M. P., Perry M.
T., Selig E. R., Spalding M., Steneck R. and R. Watson 2008. A global map of human impact on marine ecosystems. *Science* 319, 948–952.

HELCOM 2017. Data needs and availability. BalticLines Deliverable 3.1 by HELCOM. Updated with new layers from HELCOM HOLAS II and OGC services.

HELCOM-VASAB MSP WG 2017. The First Report of the BSR MSP Data Expert Sub-group. HELCOM-VASAB Maritime Spatial Planning Working Group, 14th Meeting. Stockholm, Sweden, 10-11 May 2017. MSP WG 14-2017, document 5-1, Attachment. Available at https://portal.helcom.fi/meetings/HELCOM-VASAB MSP WG 14-2017-442/MeetingDocuments/5-1 The First Report of the BSR MSP Data Expert Sub-group.pdf

von der Heyden S. 2017. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes. *Coral Reefs* 36, 183–194.

Hidalgo M., Kaplan D. M., Kerr L. A., Watson J. R., Paris C. B. and H. I. Browman 2017. Advancing the link between ocean connectivity, ecological function and management challenges. *ICES Journal of Marine Science* 74, 1702–1707.

Jay S., Alves F. L., O'Mahony C., Gomez M., Rooney A., Almodovar M., Gee K., Suárez de Vivero J. L., Gonçalves J. M. S., da Luz Fernandes M., Tello O., Twomey S., Prado I., Fonseca C., Bentes L., Henriques G. and A. Campos 2016. Transboundary dimensions of marine spatial planning: Fostering inter-jurisdictional relations and governance. *Marine Policy* 65, 85–96.

Klain S. C. and K. M. A. Chan 2012. Navigating coastal values: Participatory mapping of ecosystem services for spatial planning. *Ecological Economics* 82, 104–113.

Kerr S., Johnson K. and J.C. Side 2014. Planning at the edge: Integrating across the land sea divide. *Marine Policy* 47, 118–125.

Mangubhai S., Wilson J. R., Rumetna L. Maturbong Y. and Purwanto 2015. Explicitly incorporating socioeconomic criteria and data into marine protected area zoning. *Ocean & Coastal Management* 116, 523–529.

Maxwell S. M., Hazen E. L., Lewison R. L., Dunn D. C., Bailey H., Bograd S. J., Briscoe D. K., Fossette S, Hobday A. J., Bennett M., Benson S., Caldwell M. R., Costa D. P., Dewar H., Eguchi T., Hazen L., Kohin S., Sippel T. and L. B. Crowder 2015. Dynamic ocean management: Defining and conceptualizing real-time management of the ocean. *Marine Policy* 58, 42–50.

MSP Data Study 2016. MSP Data Study Executive Summary. Technical Study under the Assistance Mechanism for the Implementation of Maritime Spatial Planning. Executive Agency for Small and Medium-Sized Enterprises, European Commission. Available at: <u>https://publications.europa.eu/en/publication-detail/-/publication/f01f1b26-1b60-11e7-aeb3-01aa75ed71a1</u>

Nicolas F., Frias M. and H. Backer (eds.) 2016. Mapping maritime activities within the Baltic Sea. BalticScope. Available at:

www.balticscope.eu/content/uploads/2015/07/BalticScope_MSP_Data_WWW.pdf

Reiss H., Birchenough S., Borja A., Buhl-Mortensen L., Craeymeersch J., Dannheim J., Darr A., Galparsoro I., Gogina M., Neumann H., Populus J., Rengstorf A. M., Valle M., van Hoey G., Zettler M. L. and S. Degraer 2015. Benthos distribution modelling and its relevance for marine ecosystem management. *ICES Journal of Marine Science* 72, 297–315.

Shucksmith R., Gray L., Kelly C. and J. F. Tweddle 2014. Regional marine spatial planning – The data collection and mapping process. *Marine Policy* 50, 1–9.

Stamoulis K. A. and J. M. S. Delevaux 2015. Data requirements and tools to operationalize marine spatial planning in the United States. *Ocean & Coastal Management* 116, 214–223.

Stelzenmüller V., Lee J., South A., Foden J. and S. Rogers 2013. Practical tools to support marine spatial planning: A review and some prototype tools. *Marine Policy* 38, 214–227.

Sullivan C. M., Conway F. D. L., Pomeroy C., Hall-Arber M. and D. J. Wright 2015. Combining geographic information systems and ethnography to better understand and plan ocean space use. *Applied Geography* 59, 70–77.

Wulff F., Sokolov A. and O. Savchuk 2013. Nest – a decision support system for management of the Baltic Sea. A user manual. Baltic Nest Institute, BNI Technical Report Series 10. 69 pp.

Annex A

Data and modelling needs of the Latvian case study

Data needed	Time scale	Spatial resolution	Confidence
bathymetry	present state	scale of marine spatial plan/quantitative	observations
geology	present state	scale of marine spatial plan/quantitative	observations
near-bottom temperature	present state	scale of marine spatial plan/quantitative	observations
near-bottom salinity	present state	scale of marine spatial plan/quantitative	observations
near-bottom oxygen	present state	scale of marine spatial plan/quantitative	observations
near-bottom current velocity	present state	scale of marine spatial plan/quantitative	observations
water transparency	variable; past, present, future	local scale	observations
substrate coverage of macrovegetation	present state	scale of marine spatial plan/quantitative	observations
biomass of macrovegetation	present state	scale of marine spatial plan/quantitative	observations
species diversity of macrovegetation	present state	scale of marine spatial plan/quantitative	observations
substrate coverage of macrofauna	present state	scale of marine spatial plan/quantitative	observations
biomass of macrofauna	present state	scale of marine spatial plan/quantitative	observations
species diversity of macrofauna	present state	scale of marine spatial plan/quantitative	observations
substrate coverage of soft bottom macrofauna	present state	scale of marine spatial plan/quantitative	observations
biomass of soft bottom macrofauna	present state	scale of marine spatial plan/quantitative	observations
species diversity of soft bottom macrofauna	present state	scale of marine spatial plan/quantitative	observations
fish catches	present state	1x1km	reports
fish species occurrence	present state	1x1km	reports
fish species abundance	present state	1x1km	reports

fish species population structure	present state	1x1km	reports
occurrence of seabird species	10yr breeding season mean	1x1km	observations
seabird abundance	10yr breeding season mean	1x1km	observations
nitrogen content in benthic biota	present state	scale of marine spatial plan/quantitative	observations
phosphorus content in benthic biota	present state	scale of marine spatial plan/quantitative	observations
carbon content in benthic biota	present state	scale of marine spatial plan/quantitative	observations
primary production of macroalgal species	present state	scale of marine spatial plan/quantitative	observations
growth rates of macroalgal species	present state	scale of marine spatial plan/quantitative	observations
mussel production	present state	scale of marine spatial plan/quantitative	observations
mussel filtration capacity	present state	scale of marine spatial plan/quantitative	observations
nitrogen content in sediments	present state	scale of marine spatial plan/quantitative	observations
phosphorus content in sediments	present state	scale of marine spatial plan/quantitative	observations
carbon content in sediments	present state	scale of marine spatial plan/quantitative	observations
fishing grounds	present use	local scale	expert knowledge
windfarms	present, future next 50yrs	exact	official documents
shipping lanes	present use, future next 10yrs	exact	official documents
oil extraction	present, future next 10yrs	exact	official documents
aquaculture	present, future next 10yrs	exact	official documents
cables & pipelines	present, future next 10yrs	exact	official documents
nature protection sites	present, future next 10yrs	exact	official documents
dumping sites	present, future next 10yrs	exact	official documents

Annex B

Data and modelling needs of the Danish-German case study

Data needed	Time scale	Spatial resolution	Confidence
bathymetry	present	regional scale	modelled data
temperature	present seasonal variations (mean over the past years in the growth season)	regional scale	modelled data
salinity	present seasonal variations (mean over the past years in the growth season)	regional scale	modelled data
oxygen	present seasonal variations (mean over the past years in the growth season)	regional scale	modelled data
chlorophyll	present seasonal variations (mean over the past years in the growth season)	regional scale	modelling, satellite data
bottom velocity	present seasonal variations (mean over the past years in the growth season)	regional scale	modelled data
substrate	present	regional scale	modelled data
abundance of eiders	present seasonal variations (mean over the past years in the growth season)	regional scale	modelling
platforms & windparks	existing & planned	exact	official reports
extraction sites	existing & planned	exact	official reports
dumping sites	past (munition dumping grounds), existing & planned	exact	official reports
cables & pipelines	past, existing& planned	exact	official reports
shipping	existing & planned	exact	official reports, AIS data
fishing	existing	regional scale	official reports, VMS data, expert knowledge
aquaculture	existing & planned	exact	official reports, expert knowledge
recreation areas	existing	regional scale	official reports, expert knowledge
nature protection sites	existing & planned	regional scale	official reports
(land based point-pollution)	existing	exact	official reports
locations of finfish farms	existing & planned	exact	official reports

ambient nutrient concentration	present seasonal variations	regional scale	modelling
natural blue mussel abundance	present seasonal variations	regional scale	modelled data
recruitment rate of blue mussels	daily rate (time scale can be chosen by model)	local scale	modelling
growth rate of blue mussels	daily rate (time scale can be chosen by model)	local scale	modelling
mortality rate of blue mussels	daily rate (time scale can be chosen by model)	local scale	modelling
oxygen	initial conditions to be chosen for modelling	local scale	modelling
NO3 concentration	initial conditions to be chosen for modelling	local scale	modelling
NH4 concentration	initial conditions to be chosen for modelling	local scale	modelling
PO4 concentration	initial conditions to be chosen for modelling	local scale	modelling
MePO4	initial conditions (time scale can be chosen by model)	local scale	modelling
MP-C concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
MP-N concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
MP-P concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
detritus-C concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
detritus-N concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
detritus-P concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
zooplankton-C concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
zooplankton-N concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
zooplankton-P concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
pore water O2 concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
pore water NH4 concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
pore water PO4 concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
sed-OC concentration	initial conditions (time scale can be chosen by model)	local scale	modelling

sed-ON concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
sed-OP concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
sed-MePO4 concentration	initial conditions (time scale can be chosen by model)	local scale	modelling
max PO4 uptake rate	daily rate (time scale can be chosen by model)	local scale	modelling
max N quota in MP	time scale can be chosen by model	local scale	modelling
max P quota in MP	time scale can be chosen by model	local scale	modelling
min N quota in MP	time scale can be chosen by model	local scale	modelling
min P quota in MP	time scale can be chosen by model	local scale	modelling
max N remineralisation rate	daily rate (time scale can be chosen by model)	local scale	modelling
max P remineralisation rate	daily rate (time scale can be chosen by model)	local scale	modelling
min P quota in detritus	time scale can be chosen by model	local scale	modelling
Ivlev constant in zooplankton grazing	time scale can be chosen by model	local scale	modelling
max zooplankton grazing pressure at 0 °C	daily rate (time scale can be chosen by model)	local scale	modelling
Ivlev constant in zooplankton mortality	time scale can be chosen by model	local scale	modelling
max zooplankton mortality at 0 $^\circ\mathrm{C}$	daily rate (time scale can be chosen by model)	local scale	modelling
depth of sediment layer	time scale can be chosen by model	local scale	modelling
max P remineralisation rate	daily rate (time scale can be chosen by model)	local scale	modelling
max N remineralisation rate	daily rate (time scale can be chosen by model)	local scale	modelling
min N quota	time scale can be chosen by model	local scale	modelling
min P quota	time scale can be chosen by model	local scale	modelling
sorption rate	daily rate (time scale can be chosen by model)	local scale	modelling
desorption rate	daily rate (time scale can be chosen by model)	local scale	modelling
oxygen threshold concentration	time scale can be chosen by model	local scale	modelling

velocity fields	hourly means or finer (e.g. 1/4 hourly means)	local scale	modelling
blue mussel production	present state, future predictions	local scale	modelling
nutrient reduction by blue mussels	present state, future predictions	local scale	modelling
reduction of algae mats on nearby beaches	present state, future predictions	local scale	modelling
sediment conditions beneath and close to the mussel farm	present state, future predictions	local scale	modelling
scientific studies on blue mussel farming	present	national scale	reports

Annex C

Data and modelling needs of the Pan-Baltic case study

Data needed	Time scale	Spatial resolution	Confidence
administrative borders	present	Baltic scale, national, local scale	official
maritime spatial plan areas	present	national scale	official
seabed relief and bathymetry	present	regional - Baltic wide	observations/modelling
wind and wave action	present state and future predictions	regional - Baltic wide	observations/modelling
habitat directive habitats requiring a specific protective regime	present state and future predictions		modelled
natura 2000 sites	present	local scale	official
marine protected areas	present	local scale	official
marine national parks	present state and future predictions	local scale	official
UNESCO biosphere reserves	present	regional scale	official
military areas	present state and future predictions	local scale	official
munition disposal sites	present	local scale	observations
priority areas for activities	present state and future predictions	regional	official/land use maps
reservation areas for activities	present state and future predictions	regional	official/land use maps
exclusion areas for activities	present state and future predictions	regional	official/land use maps
other management designations	present state and future predictions	regional	official/land use maps
long terms strategies and spatial visions	present state and future predictions	regional / national strategies	reports
population estimates	present state and future predictions	regional - Baltic-wide scale	expert knowledge/reports
density of vacation (summer) residences	present state and future predictions	regional	expert knowledge/reports
IMO routes	present	local - Baltic wide	official

fairways	present	local - Baltic wide	official
anchorages	present	local	official
ferry routes	present	local - Baltic wide	official
port locations	present		official
import/port/year	time-series, present state	million tons	reports
export/port/year	time-series, present state	million tons	reports
depth of port fairways	present state, future plans		reports
underwater noise	present	Baltic wide	observations/modelling
atmospheric emissions	time-series, present state	regional - Baltic wide	observations/modelling
emissions to water	time-series, present state	regional - Baltic wide	observations/modelling
marine litter	time-series, present state	regional - Baltic wide	observations/modelling
shipping accidents	time-series, present state	regional - Baltic wide	observations
AIS data	present state (1-2 yrs data)	regional - Baltic wide	observations/modelling
fishery harbours	present state (1-2 yrs data)	regional - Baltic wide	official/reports
vessel movements to and from ports	present state (1-2 yrs data)	regional - Baltic wide	observations/modelling
expected annual ship movements for maintenance	future predictions		reports
recreation and tourism areas	present	local	official
leisure/sporting activity sites	present	local	reports
marinas	present	local	official
distribution of water-related sports/activities	present	local	reports
distribution of tourists (bed nights)	present	local	reports
distribution of accommodation services, number of night's lodging	present	local	reports
underwater cultural heritage/world heritage	present	local	official/reports/expert knowledge

underwaters parks/diving destinations/ wrecks	present	local	reports
leisure and small boat routes/ movements	present	local	official/reports/expert knowledge
mobile data concerning the movement of tourists	present	local	observations
potential aquaculture areas	future predictions	local - regional	modelled data
important fishery areas	present	local - regional	reports
spatial distribution of fishing activity	present	local - regional	reports
location of existing wind farms	present	local - regional	official
location of existing fish farms	present	local - regional	official
designated aquaculture areas	present	local - regional	
electricity cables and lines, high voltage cables/lines	present	local - regional	official
pipelines	present	local - regional	official
safety zones/ construction fields	future predictions	local - regional	official
(energy) platforms	future predictions	local - regional	official
sand and gravel extraction sites	present	local - regional	official
HOLAS II holistic ecosystem healt status assessments 2011-2015	present	Baltic-wide	modelled data
Baltic Sea pressure and impact Index	present	Baltic-wide	modelled data
risk areas (collisions)	present	Baltic-wide	modelled data
environmental vulnerability	present	Baltic-wide	modelled data
spawning and nursery areas	present	regional	observations/modelled data

AARHUS UNIVERSITY

Turun yliopisto University of Turku

